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Nondeterminism of (physical) systems

L(x)u(z) = f(x) deemnsic

I ’ o L, 0)ulz,0) = f(z,0)

Most physical systems exhibit randomness, which, because of its lack of pattern or
regularity, can not be explicitly captured by deterministic mathematical models
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Random fields

a(-,0) : ©— L*(D)

p(x) = Ela(z,0)

Covariance function

(z,2') = E|(a(z,0) — p(x))(a(z', ) — p(z’))]

A random field is a collection of deterministic functions on a bounded domain, called
realizations, which are indexed by events in some sample set

August, 4th 2020 Matrix-free isogeometric Galerkin method Karhunen-Loéve approximation of random fields



Covariance functions
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Figure 1: Common covariance functions (kernels), i.e.
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Random field discretization

Numerical treatment of a continuous random field requires discretization in the stochastic space!

Decompose the random field into a sum of the mean and a finite linear combination of [?
orthogonal functions weighted by uncorrelated stochastic random variables
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Karhunen-Loeve expansion

Toi=\oi, (T)(z) = /D D(z, 2')é(x') da’

, ) .
1/ i

fi(x) = VAigi(x) M
an(,0) = p(z) + ; VAo (2)&:(0)

The Karhunen-Loeve series expansion yields the best M-term linear approximation of the random
field, in the sense that the total mean squared error is minimized
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Solution of the integral eigenvalue problem

* A range of different methods for IEVP has been proposed in the literature’

» Recently an isogeometric Galerkin method has been proposed?

Find {An,ént € R x Ry, such that

/D (/ | [(z,2")pp (") da’ — Ath(x)> Un(z)dz =0 Vi, € Ry, C L*(D)

Non-uniform rational B-splines

" For an overview see the review paper by Betz et al. Numerical methods for the discretization of random fields by means of the Karhunen-Loéve expansion (2014)
2Rahman, S., A Galerkin isogeometric method for Karhunen-Loéve approximation of random fields (2018)
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Why an isogeometric Galerkin method?
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Spectral properties of the method improve
due to higher continuity the basis

Figure 2: Full spectrum of eigenvalues normalized with respect to
a reference solution. Comparing quadratic C' continuous B-splines
and standard quadratic C° continuous basis functions. One
dimensional example with an exponential covariance function.



Standard discretization
AcRVN Z e RVN vy e RY, My €RY, (L)) €T, Ni=#T

Ajj = / I'(%, " Ni(2)N;(2") det DF () det DF (') dz da’
AVh — )\hZVh

Generalized algebraic eigenvalue problem ZU — M (i) ]\[J (i‘) det DF (i) dfij

A

D

Standard Galerkin methods for this class of integral eigenvalue problems are numerically challenging!

I Due to numerical integration over a 2d dimensional domain the complexity of the assembly is O(N p37)
ii.  The main system matrix A is a dense matrix, which requires 8 N2 bytes of memory in double precision arithmetic

iii. The generalized algebraic eigenvalue problem (usually) requires a reformulation into a standard eigenvalue
problem, i.e. using Cholesky decomposition of the right-hand-side mass matrix with complexity O(N )
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Figure 3: Complexity of assembly O (N p?39) Figure 4: Complexity of Cholesky decomposition O(N?)
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Table 1: Matrix-storage costs in double precision
Number of degrees of freedom | 103 | 104 | 10° | 106
Matrix storage |8 MB | 800 MB |80 GB | 8TB
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New trial space
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New trial space
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Standard algebraic eigenvalue problem

A =L"IAL="T  where LLT =/
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Novel interpolation based quadrature method'?

To reduce assembly costs of the main system matrix, we propose a novel method that
I.  is optimal with regard to the number of integration points

ii.  has complexity independent of polynomial degree, which enables higher order methods

Computational complexity in comparison
\72
O <2dN€2 (p ~+ 1)2d+1) O (N Niter/Nthread)
Sum factorization Interpolation based quadrature

! Arthur, D.W., The Solution of Fredholm Integral Equations Using Spline Functions (1973)

2 Mantzaflaris, A., Jiittler, B., Integration by interpolation and look-up for Galerkin-based isogeometric analysis (2015)

August, 4th 2020 Matrix-free isogeometric Galerkin method Karhunen-Loéve approximation of random fields 14



Interpolation based quadrature

L.

G(3,4)

&
@ Interpolation i.e. at Greville abscissae

H(&m, 2)) = Y GuB(im)Bi(#],) = BTGB

k,leZ

// i.2') Bi(2)B;(3") di di

Z Gk|/ 7)Bi(z) di / Bi(#)B;(z") da’
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Bi(2)By(

~

) dz 43’

= Z GruMiM;;

k,leZ

M =M;®---®@M; where

1
M= [ B 60) B i) di
0

Integrated exactly up machine precision using
Gauss-Legendre quadrature rule with (p+1) quadrature points per element

The approximation error is entirely due to the interpolation error
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Interpolation error analysis
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Figure 5: Normalized L? interpolation error in a one-dimensional study case for the squared exponential kernel (left) and the
(right) with convergence rates O (/ **') and

August, 4th 2020

_ h/(bL)
1071 10Y
101 .
1072 -
. g
_'_
+
+
—— p=10
10_2 10—1
h
, respectively.
16

Matrix-free isogeometric Galerkin method Karhunen-Loéve approximation of random fields



Reproduction of spectral properties
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Proposed matrix-free matrix-vector product A'v = V/

~ = ~ Input: v;, 4, € R™> X" Jp ;€ RMxxnd
A =1 B—1J JB=TML-T B;, s, € RXfn and M, ; € Risxm

= f‘(@kail) Output: vj , € R xnd
J = diag,/det DF (i)

—1 —1
‘/jl---jd A L o L U’il...’id

G = J J Kernel evaluation at Greville abscissae ' 1171 . tdjd
N 20 Xgy. kg € ]\411@13'1 : "]\{kdjdv}l...jd
G — B—lGB—T Kernel interpolation I3: }/l/l.--ld <— Bk1l1 “ . Bkdlkal--'k?d
~ ~ 4: i/vll---ld < Jllld @ S-/ll...ld
A = G Evaluation of the system equation

50 Zhy k& Dbyttt ¥ty € O Niar/Nossens)

~ /
A/ — L_IAL_T Reformulation into a standard eigenvalue problem 6: Zkl...kd — Jkl...kd ® Zkl...kd
-1 —1
I7: Y}l---jd — Bj1k1 Co Bjdkdzkl...kd
8: Vl1---ld = Mjill T M{dld}/jl---jd
. / _ e o o I
9. v 'd %Lilll Lidld‘/ll"'ld

Besides the kernel evaluation, all matrices have a Kronecker 11...1

product structure - we can utilize it to efficiently implement the

matrix-vector product for iterative eigenvalue solvers! Algorithm 1: Matrix-free matrix-vector product using the Kronecker

structure and tensor contraction’ for efficient evaluation

! Bressan, A., Takacs, S., Sum factorization techniques in Isogeometric Analysis (2019)

August, 4th 2020 Matrix-free isogeometric Galerkin method Karhunen-Loéve approximation of random fields 18



IBQ Benchmark

Benchmark case

Solution time 12.91 s

In this benchmark we compare the performance of a solution NDOF Solution space 59940

obtained by Rahman (2018) using the standard isogeometric

Galerkin method and our own fast IBQ method, while keeping NDOF Interpolation 8525 _
the estimated eigenvalues comparable Memory 0.587 GB -
Kernel under consideration is the exponential kernel Number of iterations 63 -

Table 3: Performance comparison between IBQ and the standard

Table 2: Comparison of eigenvalues with the analogous

test case presented by Rahman (2018)
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Mode # | IBQ Benchmark isogeometric Galerkin method presented by Rahman (2018)
1 162.7993245 162.7993688
2 91.43092739 91.43079317
3 57.56741771 57.56765769
4 51.09028325 51.09029418
5 38.79796382 38.79808752
6 27.90416545 27.90392169
7 25.05648777 25.05681566

p=1{2,1,1;

19



H . h d t t Case 1 Case 2
Ig _Or er eS Case Polynomial order 16 16
In this benchmark we use a high-order interpolation and olution time 165k 163k
solution space and compare performance and eigenvalues for NDOF Solution space 1.80E5 4.21E5
two computations under h-refinement of the solution space NDOF Interpolation 1 80ES 1 80ES
Kernel under consideration is the squared exponential kernel Memory 1.34 GB 7.48 GB
Number of iterations 41 41
Mode # | Case 1 Case 2 Table 5: Performance comparison between both test cases
1 14476.27783 14476.27783
2 6531.770729 6531.770729
3 6531.770728 6531.770725
4 2091.877012 2091.877015
5 2091.877003 2091.877012
6 1971.747135 1971.747136
7 552.7086269 552.7086262

Table 4: Comparison of eigenvalues in both test cases
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In conclusion

= Novel projection based quadrature of the weak form is used for efficient formation of high-

dimensional integrands of high polynomial order

= |nexpensive reformulation of the generalized eigenvalue problem into a standard eigenvalue

problem using Kronecker product of univariate mass matrices

= Reduced memory usage by implementing a fast multithreaded matrix-free matrix-vector product

for iterative eigenvalue solvers by using tensor contraction of Kronecker structured matrices

Further research effort is required towards analysis of the error, as well as the spectral properties of the method
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Discussion

Mondeterminism of (physical] systems e Earhunen-Lodve expansion Movel interpolation based quadrature method™ Interpolation based quadrature

T red et asse by casts ol thE mais spstem matri, we eopese & novel methed that nle
s 1541t e 0 L iLazrrusl et mpnd e uTEe of mEgnaton por i = ! 1

i s oty indsgrdent of polmom ol deqes, wiich ssbles migha: order memads " R —

Lizhulx] = flz) s
[ - ~

L )

‘?

. - ft-l::r] = f'.,i._l.-_-.l[.;:l I i B! 1 Gulkizadii| =BTEB
- - e L, Bl = flz,0) Y inele ) = lz) + B0 oo (16 (8) Cumpamanl gl e oy .E EMTTES
=l ﬁ.,--j;‘ﬂ;f;_l..':m:j-mmﬁa:—'

e e s e e = E-’-JIL fi | ) ,I|:. B By

ain LN 4 1)1 O F B Wit |
! i [

=

wied

A, e G S TS AL LA ettt kol B

|

High-order test case prop— \

A, e e TS L Lo R ke B P Aot A U RS T R IR LA b A Akl B

Proposed matrix-free matrix-vector product A'v = v/

i”mm.\

v ot s " "
Nkt 14 1=,

W St | . e

LR [ [
C_ UL 7 L R
Wb of - “ o

Ls L P o g o i W4 g

1 tewene | woss
1 [weoown | veson .
T P S DRI
- I Ve . T T e TR
oy et = e > Wy e * aapee | wweero | owxn
- FlE o) =] ot Ra  mmaes | nwsom * mnuns  Twnmes
- e RIS WPUAT R SN I N ST 49 —t
" I | Uk o s o ok g B G T | el | mowvie T e e
- ia - 9 (RSN TR ey - v T T T
W T - o w0 W Sy w8 130 g W Comp w0 W 30wt 1 008 300 S
[T S —— e poomas s ok St o 200
g m AL O e RS S LA L L L i Fiapeirbe s e tese S 0 e e .

Michal Mika, M. Sc. ‘I/—\ m

Institute of Mechanics and Computational Mechanics

Leibniz Universitdt Hannover
Phone: +49 511.762-14095

Mail: mika@ibnm.uni-hannover.de

Homepage: https://mika.sh/ /\



mailto:mika@ibnm.uni-hannover.de
https://mika.sh/

